skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hall, Logan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While society continues to be transformed by insights from processing big data, the increasing rate at which this data is gathered is making processing in private clusters obsolete. A vast amount of big data already resides in the cloud, and cloud infrastructures provide a scalable platform for both the computational and I/O needs of big data processing applications. Virtualization is used as a base technology in the cloud; however, existing virtual machine placement techniques do not consider data replication and I/O bottlenecks of the infrastructure, yielding sub-optimal data retrieval times. This paper targets efficient big data processing in the cloud and proposes novel virtual machine placement techniques, which minimize data retrieval time by considering data replication, storage performance, and network bandwidth. We first present an integer-programming based optimal virtual machine placement algorithm and then propose two low cost data- and energy-aware virtual machine placement heuristics. Our proposed heuristics are compared with optimal and existing algorithms through extensive evaluation. Experimental results provide strong indications for the superiority of our proposed solutions in both performance and energy, and clearly outline the importance of big data aware virtual machine placement for efficient processing of large datasets in the cloud. 
    more » « less